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Asymptotic solutions of the differential equation
d?w/dz? = {W'z=%(zy— 2) p1(2) +27%q1(2)} w,
for large positive values of # are examined; p,(z) and ¢,(z) are regular functions of the complex
variable z in a domain in which p,(z) does not vanish. The point z = 0 is a regular singularity of the
equation and a branch-cut extending from z = 0 is taken through the point z = z; which is assumed
to lie on the positive real z axis. Asymptotic expansions for the solutions of the equation, valid
uniformly with respect to z in domains including z =0, z = 2z, +1i0, are derived in terms of Bessel
functions of large order. Expansions given by previous theory are not valid at all these points. The
theory can be applied to the Legendre functions.

1. INTRODUCTION AND SUMMARY

Let u be a large positive parameter and let z be a complex variable lying in an open simply-
connected domain D, in which p,(z) and ¢,(z) are regular functions of z. Let z,, a be real
positive numbers and let p,(z) and ¢,(z) be real when zis real. In an earlier paper (Thorne
1957, hereafter referred to as I), the asymptotic expansions of the differential equation

d?w

S )+,
where p(2) =z7%(zy—2) p1(2), q(2) = z7%¢(2), s (1-1)
and (@) =L 42001), ¢,(z) = b+20(1) a5 z—0,

were examined for p,(z), ¢,(2), a, z, satisfying the conditions above. Several different
examples of this equation (1-1) were considered. The point z = 0 is a regular singularity

t Based partly on research prepared under contract Nonr-220(11) between the U.S. Office of Naval
Research and the California Institute of Technology. Reference no. NR 043-121.
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586 R. C. THORNE ON THE

of (1-1), and to ensure that the solutions of (1-1) should be single-valued, it is necessary to
introduce into D, a cut, G say, extending from z = 0.

This present work gives a further investigation for two of the cases considered in I.
Following the classification introduced by Olver (19544) these were designated case B 14
and case B4. Incase B15 (I, § 3) the cut Cis taken along the real positive axis through z = z,
and the points z,+10 and z,—i0 are written z§ and zj ; we take p,(z) to be non-zero in D,
It was then proved that, providing (1-1) is modified so that z%¢,(z) ~—} as z— 0, there
exist asymptotic expansions for solutions of (1-1) which are valid uniformly with respect
to z on a Riemann surface in which z = 0, z = z{ are interior points, but the expansions are
not valid at z = zj and are not valid uniformly in the strip Zz>z,—48, 0=>4z> —§ (0>0),
|argz|<2m. In case B4 (I, §7) the function p,(z) is of the form

2722y —2) p1(2) = 272(2§—2%) py(2), (1-2)

where p,(z) is an even function of z; in this paper we shall suppose that in case B4 ¢,(z) is
also an even function of z. In this case, G is taken along the real negative axis, and as in
case B 15 there exist asymptotic expansions for solutions of (1-1) which are valid uniformly
on a Riemann surface in which z = 0 and z = z,, are interior points. The expansions are
not valid at z = —z, and are not valid uniformly in the strip Zz< —z,+4, | £z | <0 (0>0).
We take, as mentioned above, both p,(z) and ¢,(z) to be even functions of z. By making the
transformation x = z2 we can then show that, under these circumstances, case B4 is a
particular example of case B 16. For this reason we shall now confine our attention in this
paper to case B 15. The expansions of I for case B 15 and case B 4 were derived, as in all the
cases considered in I, by an application of Olver’s theory (1954 4), and are in terms of Airy
functions. In the introduction of I, a summary of Olver’s theory was given together with
a review of the other types of equation (1-1) discussed in I.

The point z = z,, and any other point at which the coefficient of #?w in (1-1) has a simple
zero, is known as a turning point of (1-1). In case B 14 the solutions of (1-1) take on different
values at z{ and zg, and thus we have effectively two distinct turning points of (1-1), and
these are separated symmetrically by the regular singularity z = 0. Now the asymptotic
character of the solutions of (1-1) depends upon the singularities and turning points of
(1-1). The Airy equation \

= W, | (19
in terms of the solutions of which the expansions in I were developed, has only one turning
point at { = 0. This indicates why the Airy-type expansions derived for both cases B 15
and B 4 are valid at only one of the two turning points that occur in each case.

In the present paper are derived expansions for case B 16 which are valid at z = z§ and
z = 0. These expansions are, however, in terms of Bessel functions of large order, and to
obtain these expansions we compare (1-1) with the equation

d? a 1
= {u2(1+22—z) "Zﬁ}y’ (1-4)

two solutions of which are #1_(uf), K, (ut) where & = m/u. We show that « depends upon
the behaviour of p,(z) at z = 0; « is kept fixed. The equation (1:4) is clearly an example of
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ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 587

case B4, and as in case B 14 the two turning points ¢ = -+ ix are separated symmetrically by
the regular singularity ¢ = 0. In I, § 5, it was shown that the Legendre functions, as defined
by Hobson, are a particular example of case B 15, and the theory given in this paper will be
applied later to obtain asymptotic expansions for Legendre functions of large positive
degree and order.

It is clear from the above discussion that the asymptotic expansions developed in this
paper are similar in character to the earlier expansions obtained by Olver (19544, 1956) for
solutions of certain linear second order differential equations. These earlier expansions
have been classified according to the type of functions in terms of which the expansions are
developed. In his two papers, Olver has considered certain cases described as cases
A, B, Cand D, and following this classification the theorem stated in § 5 of this paper, giving
expansions in terms of Bessel functions of large order, will be called theorem E. It will be
shown in § 2 that in case B 15, the equation (1-1) can be transformed into the equation (2-4)
which will therefore be described as case E of the equation (1-14).

Asymptotic expansions in terms of Bessel functions of fixed order have been given before
by Olver (1956), and certain expansions with Bessel functions of large order have been given
by Cherry (1950, § 5-4). These are discussed in detail in § 7. Although the expansions given
here were developed independently of Olver’s, the two proofs for the expansions are similar.
For this reason the theory of this present paper has been considerably rewritten and
extended, and much detail has been suppressed by frequent reference tosimilar, though not
identical, sections of Olver’s theory.

The arrangement of this paper is as follows. In §2 a transformation is apphed to bring
(1-1) into a form suitable for comparison with (1-4). The form of the asymptotic series and
relevant properties of the Bessel functions are given in §§ 3 and 4. Theorem E, which states
the existence of the asymptotic expansions in terms of Bessel functions, is given in §5, and
the outline of the proof of theorem E is given in § 6. Finally, the expansions given by Olver
and Cherry are discussed in § 7.

2. PRELIMINARY TRANSFORMATION TO STANDARD FORM

The Bessel-type expansions for solutions of (1-1) are not derived by an examination of
(1-1) as it stands. Instead, we first transform (1-1) into an equation that is asymptotic to
(1-4) for large values of u. Now, under the transformation t=#z), ¥ = wz'~*, where
z'=dz/dt, equation (1-1) becomes

ey ., ., .
de = {Wz=2(2—2) p1(2) 22+ 4, (1)} Y, (2-1)
1oagy () 4 2L s

where () = 22272,(2) + — 2%, (2) — Mz 8, (2:2)

where {z, #} is known as the Schwarzian derivative of z with respect to z. We then compare
the coefficients of #?Y in (2-1) and «2y in (1-4), and write

f; {2z — ) p(2)Pdz =—p = f ;a (1 +§-‘;)§dt. (2:3)

72-2
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588 R. C. THORNE ON THE

The choice of the sign before the last integral in (2-3) is explained below. We then have
from (2-1) and (2-2)

d2y a?y 1
where g(t) = 2"%z72q,(z) + 4%2—%{2, t. (2-5)
The point z = z§ corresponds to p = 0, ¢ = —ia, and as z— 0, p—+oc0 and ¢— 0. The func-

tion g(¢) in (2-5) is not regular at ¢ = 0 as it stands. However, we can change the value of the
parameter 4 in (1-1) by replacing %2 in (1-1) by u2+¢, where ¢ is fixed as u—c0. Then ¢,(z2)
is replaced by ¢,(z) —¢(zy—2) p1(z) and b by b—czya? It is now shown that by choosing
b and a appropriately we can make g(¢) regular at = 0. From (2-3) and (1-1) we deduce
that as z— 0, £~ 0 and z ~ Ct*/%(1+ C#"), where r = min (a/a, 2) and Cis a generic constant.
Substitution in (2-5) gives

2(8) = Ja?(4b+1) a~2-24 Cr2+2/e(14-Cr) 4 O(#-2), (2-6)

providing a=a. If now we set b = —}—the same condition as required in (3-6) in I—and
a = 2a, we deduce that g(¢) is regular at z = 0 (¢ = 0) and at z = z{ (¢ = —ia). It is shown
below that the point z = zj is a regular point of (2-3); if we had chosen a = a this would
not be so.

If now we set p = 2{* and let W = z-%w, 2=dz/d{ in (1-1), we obtain the z-p-{ trans-
formation used in I to derive the Airy-type asymptotic solutions of (1-1) valid at z = z§
and z = 0, but not valid at z = z;. We conclude that

= WAL, (27)
where O = 22720, — ¥, & = 2270,(2) — 1P -0 0, (29)

where {=d¢/d¢{, from (2-3) and (2-5). The z-p- transformation is discussed fully in 1, § 3.
The #-p-{ transformation has also been given before by Olver (19544, pp. 335-337), although
in a slightly different form. His variables 7, z, p and { are equivalent to the variables
m, e¥™i tfa, p/a, {/a of this paper. It follows that

30 =p=al Dy (2:9)
The point z = z; becomes (from I, (4:1)) p = —iam, t =iz and the three points z = 0,
z = z§ are regular points of the z-f transformation, and g(#) is regular at these three points.

Asin I, we denote by 4, 4,, ..., D, D,, ... the points and domains in the p, ¢, ... planes
corresponding to 4 and D, in the z plane. Then we deduce that D, lies wholly within
1> 0 (see figures 1, 2 and 3). We have chosen the signs in (2-3) so that D, would lie in this
half-plane.

The domain T, surrounding z = 0, obtained in I, §3, is transformed into a domain T,
surrounding ¢ = 0, the boundary of which leaves B, and B,, at angles of 37 with %t = 0;
T, is thus one-half of the domain Kof Watson (1944, pp. 270, 559) and Olver (19545, p. 336),
rotated through an angle of — }n, the size of T, being that of K magnified by the factor a.
We shall denote T, by & to' emphasize its relation to K, and we denote by & the whole
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ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 589

domain oK rotated through an angle of —4m, where ¢K denotes the domain K magnified
by the factor a. The point 7; has affix « x 0-66274 ... (Olver 19545, p. 335). As z—0, we
conclude from (1-1), (2-3) and (2-9) that

2 exp(—%4) ~exp(—£) ~ 1 | :
zexp( oc) exp( “) 52" (2-10)

where o = 2a, a, = f zn[{p(z)}* —g dz. It also follows that as | #| oo then | p| o0 with
0 :

—4im>argp> —3m, and
t ~—p—3iam. - (2-11)

It will be proved that the asymptotic expansion of the solution w,(z) of (1-1) which is
bounded at z = 0 is in terms of 7,,(ut). It is exponentially small in T, as u—>oc0.

Bl
Bl p=0
¢ 03 A
G
By|-tom B
D, D
FIGURE 1 Ficure 2 , Ficure 3
- Case B1b, z plane. Case B15, p plane. Case B1b, ¢ plane.

"The solutions of (1-1) can be continued analytically across the cuts 4,D,, 4,D,,, and we
can take a Riemann surface D¥, consisting of D, and two other domains identical with
D,, reached by crossing 4,D, and 4,D,, once in the negative and positive directions respec-
tively. D is a domain lying in |arg¢|<$n in which ¢ = +ix are interior points. In this
domain it can be shown that g(#) is an even function of #. From (2-5) and (2-8) we can find

g(t) in terms of f({), since . ,
o) = (3) TAO+1601+ o

On some reduction this gives

22 2402
+a 5 } a (2-12)

g(t)‘= “‘t?“‘f(g)“ 1602 +4(t2+a2)2

(compare Olver 19545, (4:12)). This completes the preliminary discussion on (1-1).

3. FORM OF THE ASYMPTOTIC SERIES

We now restrict consideration to the equation (2-4) where « is fixed as 4—>oc0 and take
4(t) to be a regular even function of # in an open simply-connected domain D in which the
points ¢ = 0, # = 4ia are interior points.
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A formal series solution of the equation

dzy a? 1
G (1 +5%) — g +e@) ¥ (31)
can be taken in the form
) }g’ ©
Y(t) = B2, 3 20 LEn) 5 B, (3:2)
s=0 U u s=0 U

where £, (ut) = ¢I,,(ut) 4 dK,,(ut), c and d being constants and 7,, and K,, being the modified
Bessel functions. In (3-2) 27,(ut) = dZ,,(ut)/d(ut), and A(f), B,(t) are analytic functions
of ¢ independent of u. If we differentiate the series (3-2) twice and substitute the resulting
series and (3-2) into (3-1), and equate powers of u~1, we obtain

2 2
A+ ;g +2(1+ %) B~ B, — o, (3:3)
! 4 ]' ’ 1
2AS+I+BS—;B.S’+ P‘BS—gBSZ O, (3‘4)

where 4;(¢) = d4,(¢)/d¢. These equations can be integrated to give
1 a2\~ e 1 o2\~
B =5(1+%) [ e a0)—; 4w —a0)} (1+5) "a, (3:5)
, 1 |
Ay (t) == 3BL(0) + ;B0 + 5 [ 8(0) A,0) . (3:6)

The lower limit in (8-5) is taken to be ¢ = —ia so that B(f) is regular at this point. The
integration constant in (3-6) is arbitrary and the arguments of the square roots taken so that
arg (t—ia) = arg (¢+ia) = argt = — 4w for ¢ = —ik, k>a>0 and £ real. Setting

A =1, (37)

we see that 4,(¢) is a regular even function of ¢ in D, and B,(¢) is a regular odd function of
¢in D, and they are regular at the point ¢ = i«. This follows since g(¢) is an even function of .

In theorem E of § 5, we specify the conditions under which the formal series (3-2) repre-
sents the asymptotic solutions of (3-1) in the particular cases Z,,(ut) = I,(uf) and
Z,,(ut) = K,,(ut). These two particular Bessel functions are chosen since Z,,(¢) is bounded
for | ¢| small and K,,(¢) is bounded for | ¢| large and %Z¢> 0. The expansions involving 7, (ut)
are proved for all values of arg ¢, those involving K, (ut) for | arg¢| <gm. The expansions
obtained for the Legendre functions later only require consideration of the half-plane
| arg ¢ | < %m, but the wider range of arg ¢ will be considered for completeness.

4. RELEVANT PROPERTIES OF THE BESSEL FUNCTIONS

Before stating theorem E we note certain relevant properties of the Bessel functions.
We have, as in § 3,
Z,(t) = L, () +dK,,(2), (4:1)

where ¢ and d are constants. Let S,, S,,and S;, be the regions |arg?|<}1n, |argt+7|<3n
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ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 591

and |argt—m |<}w respectively. Then K, (ut) is exponentially small in S,, as |ut|—>o0.
We have from Watson (1944, chapter 3)
0 (%t)m-i-Zs

— — a—%mmi i .
L,(2) sgoS! T(m+s+1) ¢ S u(ter™), (4-2)
K, (t) = tmcosecmm{l_,(t) —1I,(8)} = ime¥mmi HD(if), (4:3)
I, (ter™) = e™i] (f), r an integer, ot
K, (tem) = e mmi K (f) —imsinrmm cosecmnl,(¢), r an integer. (44)
We also have the Wronskian (AL, (ut), K, (1)} = . (4-5)

We assume that m and  are large positive numbers, m = au, where a is fixed. Olver (19545,
§2) has given the expansions, valid for | arg¢ | <im—6@ where >0,

o Jme® 2 U() v L NTEFaE 2 Vi) ,
Km(uﬂ J(Qu) (t2+d2)is=0(fm)s, Km(ut) J(2U)t € €s=0(_m)s3 (4 6)

e 2 Ui(n)

/ (B+ad)t 2 V(p)
I t ~ I ~ ug ’S .
m(u ) J(Qﬂu) (tz+“2)%s=0 ms m(ut) J(2ﬂu) te & s s (4 7
: ¢
where gz‘x'l=_P~%laﬂ=aln&—_‘—_—~—/—(m+~/(t2+az)' (4'8)

The functions U, V; are given by Olver (19545, (2:19), (2-22)) and the variables z, { of Olver
(19540, §2) correspond to the variables ¢/a, {/e = 7 of (4-8). From (2-10) and (21 1) we have
' as |t|—>00,f~t andas |{|—>0, 2aexp{({/a)—1}~—1 (4-9)
The #£ transformation is discussed by Olver and the following remarks will be sufficient for
our purpose. S, corresponds to a region S, consisting of 2£>0, and #Z£{<0, | #E|<1ma,
shown in figure 4. Let %,(C) denote the curve in the ¢ plane which corresponds to the line
#E = C, where C is a constant, in the § plane. Then %,(C) is a level curve of exp (—§&);
that is, it is a curve along which | exp (—£) | = constant. Then %,(0) is the boundary of the
domain & and the points of the imaginary #-axis which lie outside &’. For C> 0, the curves
%,(C) are asymptotically parallel to the imaginary ¢ axis for large |#| but near the real
t axis they are displaced to the right and curl around &'. For C<0, %,(C) are finite curves
within & and as C——o0 they become semicircles around ¢ = 0. For ¢in %t < 0, %,(C) are
the reflexion in the imaginary ¢ axisof the curves #,(C) in Sy,. In the ¢surface S, +S,,+ S.,
%,(C) for C <0 are finite curves which wind around ¢ = 0 and have their end-points on the
lines arg ¢ = 4. The curves #,(C) are sketched in figure 5 as broken lines, except for the
boundary of &’. -
The expansions (4-6) and (4-7) give useful bounds for /,,, K, in the range | arg ¢t | <in—6,
#>0. Outside this range use may be made of the Airy-type expansions of Olver (19548,
(424), (4-25)) using (4-2), (4-3) together with the continuation formulae (4-4). We then
deduce that
| 2, (ut) | <S8, (&) = A(L+ | ¢[}) 7" (1+ub) "' exp D7)},
| ut) | <Sy00) = |¢] 1 (1] £[9)28,0), }

| Kop(ut) | <T,(2) = A(1+[ ¢]5) 71 (1+ad) " exp {—uE@()},) w1
| Kop(ut) | <T;(8) = | ¢ |7 (L+ [ ¢ )2 T (0), J

(4-10)
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592 R. C. THORNE ON THE

where 4 is a generic constant and §0(¢), {@(¢) are given by
(i) E0() = E0(t) = £(t) for tin Sy,
(ii) for tnotin R, £in S, or S,

EV(t) = —E0(1) = E(te*m),

where the upper or lower signs are taken according as £ lies in S,, or in S,
(iii) ¢liesin Q@ and in S,, or S, V() = £@(¢) = §(¢e*™!) with the same convention with
respect to signs.

FiGurE 4 : Ficure 5
Bessel expansions, £ plane. Bessel expansions, ¢ plane; curves €,(C).

5. THE ASYMPTOTIC SERIES: STATEMENT OF THEOREM E

We suppose that g(¢) is a regular even function of ¢ in an open simply-connected domain
D in which ¢ = 0, ¢ = i« are interior points; the boundary of D consists of a finite number
of straight lines. If D is unbounded it is supposed that

g(t) =O0(|t|71°) (¢>0), (51)

as | t|->o0 in D, uniformly with respect to arg{, where ¢ is a constant. D’ denotes any
simply-connected domain lying wholly within D with ¢ = 0, f = iz as interior points, and
having a boundary which does not intersect the boundaries of D, and which also consists
of a finite number of straight lines. In figure 6 the boundary of D is given by firm lines, and
that of D’ by broken lines.

We define a further domain D, to consist of those points ¢ of D’ which can be joined to
the origin by a curve which does not cross either the imaginary ¢ axis or the level curve
#,(C) through ¢. Finally, we define a domain D, in relation to a point ¢; which lies in S,
and D’ and which may be at infinity in D’. D, consists of all points ¢ of D’ for which
| arg ¢| <3m and which can be joined to ¢, by a curve  which lies in D’ and satisfies the
following conditions:

(i) if ¢ lies outside ® then 4 must lie outside & and to the right of the level curve

%,(C) through ¢;
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ASYMPTOTIC SOLUTION OF DIFFERENTIAL EQUATIONS 593

(ii) if ¢ lies inside ® then &/ must lie outside the (closed) level curve %,(C) through ¢.
If a point with affix v lies on &l,, then
| exp {—E9()} | =] exp{~ED(0)}| > | exp{—ED(a)} .

An example of a domain D, is given in figure 7, and that part of D, for which — 7 < arg t<<3m,
in figure 8.

Ficure 6 FiGcure 7 Ficure 8
Domains D, D’. Domain D,. Domain D, —{m<arg < $n.

THEOREM E. Let the functions A(t), By(t) (s =0,1,2,...) be defined by the relations (3-5),
(3-6) and (3:7). Let C(¢), D,(¢) be defined by the relations

C.(1) = 143(0) +34,(0) + (14 ) B.(0),

: 1 |
D1) = A1) +Bi-y(8) — o B )
. d? a?y 1
Then the equation a;z‘q = {uz (1 +Z_2_) ~172—i—g(t)}y, (5-2)

where g(t) satisfies the conditions given above and a is real, has solutions Y(8), Y,(¢t) such that
(1) Iftliesin D, ‘ :
N-14 (¢ 1 &I (ut) A21B(8) ¢ 1
) = A1) (3 Z o)+ H (S BD L Loo( )l 59)

< ou 1+|t| u?!

Ty = L[5 S0+ 1414 () |+t e [ 3567 10 ) 59

§=0

as u~>00, where the O’s are uniform with respect to t.
(ii) Iftliesin D,
NZ1 A, (2)

i o (5440 o)} (S B0 o), o

'C, (t)

(1+|'t|)0(h%‘v)}+ut%1<'(t){ 20, +0(z5)], (59)

u2

() = 4K, ) 3

as u->o0, where the O’s are umform with reslbect to ¢.
In (5-3) to (5-6) N is an arbitrary positive integer, and Y, (¢), Y,(¢) are independent of N.
Thus we can write the series (5:3) as
t) &1, (ut) t
Toft) ~ 1, (ut) 3 2201 jsgﬁl (57)
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and there are similar infinite expansions corresponding to each of (5-4) to (5-6). Compare
with (3-2) and (4-1). We note that I, (ut) = d{Z,,(ut)}/d(ut).

The equation (1-1). The function 7,,(ut) is exponentially small as | #|— 0 in the domain §
surrounding ¢ = 0; & corresponds to the domain T, surrounding z = 0 in the z plane of
equation (1-1), and the solution w,(z) of (1-1), which is bounded at z = 0, will therefore
have an expansion in terms of I, (ut).

In §1 it was shown that the z-p-¢ transformation (2-3), used to bring the equation (1-1)
into the form (2-4) suitable for the application of theorem E, is related to the z-p-{ trans-
formation of I, (2-5), used to obtain Airy-type expansions for solutions of (1-1); it is known
that there exist Airy-type expansions for solutions of (2:7) in any domain D, in which f{({)
is regular and for which f({) = O(|{|7*#) (4> 0), as | {| >c0 in D,. This condition on f{{)
is related to the condition (5-1) on g(¢) as | ¢|>o00 in D,. For, as | {| o0 in | arg (—{) | <3,
then | ¢| —>00, andfrom (2-5), (2-8), (2'9), (2-11) and (2-12) wededucethat g(¢) = O(| ¢|~177),
o=3%u>0,as |t|>00.

6. Proor oF THEOREM E

There are two stages to the proof of theorem E; first, several properties of the functions
A,(£), B,(¢) are derived and stated in lemmas 1, 2 and 3 below, and then the theorem itself
is proved using these properties. No proofs are given here, but relevant comments are given
below and the theory is similar to that of Olver (1956) throughout.

We first define the constants d, R’ and the domains D;, 0<§<d, in relation to D, D’ in
the same way as is done in Olver (19544, § 8), except that here the points ¢ = +-ix, £ = 0 are
interior points of D, D’, D;. Let ¢’ be a positive number such that a’>«, and let

R = max (R'+d, 3a').
If ¢ lies in D, and | ¢|> R, then ¢ lies in one of a number of unbounded subdomains, E{,
E{, ..., say, denoted typically by E;. The following lemmas are proved with the restriction
that 4,(c) = 0, for some point ¢ in D,. This restriction can be relaxed in a manner similar
to that given in Olver (19544, §11). Let x = min (s, 1), ¢ defined in (5-1).
LemMma 1. If | t|—>o0 in Eg, then

A0 = a+0( 1), B =A+0( 1), 40 =07, (o)

uniformly with respect to argt in Eg. Here o and f; are constants.

LemMA 2. Let t lie in Dy and let |v| <V, where V=V(8)>0 is an assignable constant
independent of t. Then t/ze series
v2s

A(y) = A0 G Blto) = 3B g, (6:2)

converge uniformly with respect to t and v.
LemMA 3. Let t lic in Eg, and let | v | <V, where Vyis assignable, independent of t and 0<V,< V.

Then o 25
St v)—z,,%Aa, 1) = zA;a)(%)—, = 0(]¢[7), (63

1) = 5955 A00) = 3 A410) gy = O(1 £, (6:4)

as | t | oo uniformly with respect to v and arg t.
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The method of the proof of these lemmas is basically the same as that used by Olver
(1956, pp. 81-86) for his lemmas 2, 3 and 4, except that in lemma 2 above the integral in
(3+5) is integrated by parts twice whereas in Olver’s theory (1956, (10-30)) only one such
integration is required.

These lemmas having been established, the proof of theorem E follows in exactly the same
way as that for theorem D in Olver (1956, §§ 11-13), except that the inequalities (4-10) and
(4-11) are used instead of Olver’s inequalities for Bessel functions of fixed order (1956, (9-4),
(9-5), (9-10), (9-11)).

7. PREVIOUS RESULTS
If f(z) is a regular even function of z in a domain D, in which z = 0 is an interior point,
and if x is a fixed parameter with Zu >0, Olver (1956) has shown that there exist, as u >0,
asymptotic expansions for solutions of the differential equation

dzw

=l ), (71)

uniformly valid with respect to z in subdomains of D, including the origin; the expansions
are in terms of the Bessel functions /,(uz), K,(uz). The equation (7-1) has no turning points
since g is fixed as u—o0. Itis clear that if the parameter x is allowed to become large, (7-1)
will become an equation of the type (5-2), and the theory of this present paper is relevant.

Cherry (1950, § 5-4) has obtained certain expansions in terms of Bessel functions of large
order for solutions of equations of type (1-1). To obtain these expansions he first derives
Airy-type approximations for the solutions of (1-1) of the form

Y& u) Al (W¥,) {1+ 0w b)), ¢, =§0 wg, (0, =3t

Similar Airy-type approximations can also be derived for the Bessel functions 7, (ut),
K, (ut), and by eliminating the Airy functions between these, we can obtain an approxi-
mation—and thence an expansion—for the solutions of (1-1). However, since the Airy-type
approximation for the Bessel functions are not valid at # = +i«, and are not uniformly valid
in the strip | ¢ | <d, #¢t>1ia—§ (§>>0), we cannot prove that the Bessel-type approximations
and expansions obtained by Cherry’s method are uniformly valid at these points. Since we
have had asour aim the development of expansions valid uniformly at these points, it has
been necessary to develop the theory given in this paper. Cherry’s theory, however, extends
to cases when u is not necessarily real and his results hold for a/l large « (1950, p. 256). In
this paper « is a large real positive parameter.
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of Trinity College, Cambridge, and the University of Cambridge for scholarships and grants,
and the U.S. Office of Naval Research for the sponsorship of a research fellowship, during
the tenure of which this paper was completed. This present paper has also been produced
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